123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277 |
- /******************************************************************************
- * Spine Runtimes License Agreement
- * Last updated January 1, 2020. Replaces all prior versions.
- *
- * Copyright (c) 2013-2020, Esoteric Software LLC
- *
- * Integration of the Spine Runtimes into software or otherwise creating
- * derivative works of the Spine Runtimes is permitted under the terms and
- * conditions of Section 2 of the Spine Editor License Agreement:
- * http://esotericsoftware.com/spine-editor-license
- *
- * Otherwise, it is permitted to integrate the Spine Runtimes into software
- * or otherwise create derivative works of the Spine Runtimes (collectively,
- * "Products"), provided that each user of the Products must obtain their own
- * Spine Editor license and redistribution of the Products in any form must
- * include this license and copyright notice.
- *
- * THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY
- * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY
- * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES,
- * BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND
- * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THE SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *****************************************************************************/
- using System;
- namespace Spine {
- public class Triangulator {
- private readonly ExposedList<ExposedList<float>> convexPolygons = new ExposedList<ExposedList<float>>();
- private readonly ExposedList<ExposedList<int>> convexPolygonsIndices = new ExposedList<ExposedList<int>>();
- private readonly ExposedList<int> indicesArray = new ExposedList<int>();
- private readonly ExposedList<bool> isConcaveArray = new ExposedList<bool>();
- private readonly ExposedList<int> triangles = new ExposedList<int>();
- private readonly Pool<ExposedList<float>> polygonPool = new Pool<ExposedList<float>>();
- private readonly Pool<ExposedList<int>> polygonIndicesPool = new Pool<ExposedList<int>>();
- public ExposedList<int> Triangulate (ExposedList<float> verticesArray) {
- var vertices = verticesArray.Items;
- int vertexCount = verticesArray.Count >> 1;
- var indicesArray = this.indicesArray;
- indicesArray.Clear();
- int[] indices = indicesArray.Resize(vertexCount).Items;
- for (int i = 0; i < vertexCount; i++)
- indices[i] = i;
- var isConcaveArray = this.isConcaveArray;
- bool[] isConcave = isConcaveArray.Resize(vertexCount).Items;
- for (int i = 0, n = vertexCount; i < n; ++i)
- isConcave[i] = IsConcave(i, vertexCount, vertices, indices);
- var triangles = this.triangles;
- triangles.Clear();
- triangles.EnsureCapacity(Math.Max(0, vertexCount - 2) << 2);
- while (vertexCount > 3) {
- // Find ear tip.
- int previous = vertexCount - 1, i = 0, next = 1;
- // outer:
- while (true) {
- if (!isConcave[i]) {
- int p1 = indices[previous] << 1, p2 = indices[i] << 1, p3 = indices[next] << 1;
- float p1x = vertices[p1], p1y = vertices[p1 + 1];
- float p2x = vertices[p2], p2y = vertices[p2 + 1];
- float p3x = vertices[p3], p3y = vertices[p3 + 1];
- for (int ii = (next + 1) % vertexCount; ii != previous; ii = (ii + 1) % vertexCount) {
- if (!isConcave[ii]) continue;
- int v = indices[ii] << 1;
- float vx = vertices[v], vy = vertices[v + 1];
- if (PositiveArea(p3x, p3y, p1x, p1y, vx, vy)) {
- if (PositiveArea(p1x, p1y, p2x, p2y, vx, vy)) {
- if (PositiveArea(p2x, p2y, p3x, p3y, vx, vy)) goto break_outer; // break outer;
- }
- }
- }
- break;
- }
- break_outer:
- if (next == 0) {
- do {
- if (!isConcave[i]) break;
- i--;
- } while (i > 0);
- break;
- }
- previous = i;
- i = next;
- next = (next + 1) % vertexCount;
- }
- // Cut ear tip.
- triangles.Add(indices[(vertexCount + i - 1) % vertexCount]);
- triangles.Add(indices[i]);
- triangles.Add(indices[(i + 1) % vertexCount]);
- indicesArray.RemoveAt(i);
- isConcaveArray.RemoveAt(i);
- vertexCount--;
- int previousIndex = (vertexCount + i - 1) % vertexCount;
- int nextIndex = i == vertexCount ? 0 : i;
- isConcave[previousIndex] = IsConcave(previousIndex, vertexCount, vertices, indices);
- isConcave[nextIndex] = IsConcave(nextIndex, vertexCount, vertices, indices);
- }
- if (vertexCount == 3) {
- triangles.Add(indices[2]);
- triangles.Add(indices[0]);
- triangles.Add(indices[1]);
- }
- return triangles;
- }
- public ExposedList<ExposedList<float>> Decompose (ExposedList<float> verticesArray, ExposedList<int> triangles) {
- var vertices = verticesArray.Items;
- var convexPolygons = this.convexPolygons;
- for (int i = 0, n = convexPolygons.Count; i < n; i++) {
- polygonPool.Free(convexPolygons.Items[i]);
- }
- convexPolygons.Clear();
- var convexPolygonsIndices = this.convexPolygonsIndices;
- for (int i = 0, n = convexPolygonsIndices.Count; i < n; i++) {
- polygonIndicesPool.Free(convexPolygonsIndices.Items[i]);
- }
- convexPolygonsIndices.Clear();
- var polygonIndices = polygonIndicesPool.Obtain();
- polygonIndices.Clear();
- var polygon = polygonPool.Obtain();
- polygon.Clear();
- // Merge subsequent triangles if they form a triangle fan.
- int fanBaseIndex = -1, lastWinding = 0;
- int[] trianglesItems = triangles.Items;
- for (int i = 0, n = triangles.Count; i < n; i += 3) {
- int t1 = trianglesItems[i] << 1, t2 = trianglesItems[i + 1] << 1, t3 = trianglesItems[i + 2] << 1;
- float x1 = vertices[t1], y1 = vertices[t1 + 1];
- float x2 = vertices[t2], y2 = vertices[t2 + 1];
- float x3 = vertices[t3], y3 = vertices[t3 + 1];
- // If the base of the last triangle is the same as this triangle, check if they form a convex polygon (triangle fan).
- var merged = false;
- if (fanBaseIndex == t1) {
- int o = polygon.Count - 4;
- float[] p = polygon.Items;
- int winding1 = Winding(p[o], p[o + 1], p[o + 2], p[o + 3], x3, y3);
- int winding2 = Winding(x3, y3, p[0], p[1], p[2], p[3]);
- if (winding1 == lastWinding && winding2 == lastWinding) {
- polygon.Add(x3);
- polygon.Add(y3);
- polygonIndices.Add(t3);
- merged = true;
- }
- }
- // Otherwise make this triangle the new base.
- if (!merged) {
- if (polygon.Count > 0) {
- convexPolygons.Add(polygon);
- convexPolygonsIndices.Add(polygonIndices);
- } else {
- polygonPool.Free(polygon);
- polygonIndicesPool.Free(polygonIndices);
- }
- polygon = polygonPool.Obtain();
- polygon.Clear();
- polygon.Add(x1);
- polygon.Add(y1);
- polygon.Add(x2);
- polygon.Add(y2);
- polygon.Add(x3);
- polygon.Add(y3);
- polygonIndices = polygonIndicesPool.Obtain();
- polygonIndices.Clear();
- polygonIndices.Add(t1);
- polygonIndices.Add(t2);
- polygonIndices.Add(t3);
- lastWinding = Winding(x1, y1, x2, y2, x3, y3);
- fanBaseIndex = t1;
- }
- }
- if (polygon.Count > 0) {
- convexPolygons.Add(polygon);
- convexPolygonsIndices.Add(polygonIndices);
- }
- // Go through the list of polygons and try to merge the remaining triangles with the found triangle fans.
- for (int i = 0, n = convexPolygons.Count; i < n; i++) {
- polygonIndices = convexPolygonsIndices.Items[i];
- if (polygonIndices.Count == 0) continue;
- int firstIndex = polygonIndices.Items[0];
- int lastIndex = polygonIndices.Items[polygonIndices.Count - 1];
- polygon = convexPolygons.Items[i];
- int o = polygon.Count - 4;
- float[] p = polygon.Items;
- float prevPrevX = p[o], prevPrevY = p[o + 1];
- float prevX = p[o + 2], prevY = p[o + 3];
- float firstX = p[0], firstY = p[1];
- float secondX = p[2], secondY = p[3];
- int winding = Winding(prevPrevX, prevPrevY, prevX, prevY, firstX, firstY);
- for (int ii = 0; ii < n; ii++) {
- if (ii == i) continue;
- var otherIndices = convexPolygonsIndices.Items[ii];
- if (otherIndices.Count != 3) continue;
- int otherFirstIndex = otherIndices.Items[0];
- int otherSecondIndex = otherIndices.Items[1];
- int otherLastIndex = otherIndices.Items[2];
- var otherPoly = convexPolygons.Items[ii];
- float x3 = otherPoly.Items[otherPoly.Count - 2], y3 = otherPoly.Items[otherPoly.Count - 1];
- if (otherFirstIndex != firstIndex || otherSecondIndex != lastIndex) continue;
- int winding1 = Winding(prevPrevX, prevPrevY, prevX, prevY, x3, y3);
- int winding2 = Winding(x3, y3, firstX, firstY, secondX, secondY);
- if (winding1 == winding && winding2 == winding) {
- otherPoly.Clear();
- otherIndices.Clear();
- polygon.Add(x3);
- polygon.Add(y3);
- polygonIndices.Add(otherLastIndex);
- prevPrevX = prevX;
- prevPrevY = prevY;
- prevX = x3;
- prevY = y3;
- ii = 0;
- }
- }
- }
- // Remove empty polygons that resulted from the merge step above.
- for (int i = convexPolygons.Count - 1; i >= 0; i--) {
- polygon = convexPolygons.Items[i];
- if (polygon.Count == 0) {
- convexPolygons.RemoveAt(i);
- polygonPool.Free(polygon);
- polygonIndices = convexPolygonsIndices.Items[i];
- convexPolygonsIndices.RemoveAt(i);
- polygonIndicesPool.Free(polygonIndices);
- }
- }
- return convexPolygons;
- }
- static private bool IsConcave (int index, int vertexCount, float[] vertices, int[] indices) {
- int previous = indices[(vertexCount + index - 1) % vertexCount] << 1;
- int current = indices[index] << 1;
- int next = indices[(index + 1) % vertexCount] << 1;
- return !PositiveArea(vertices[previous], vertices[previous + 1], vertices[current], vertices[current + 1], vertices[next],
- vertices[next + 1]);
- }
- static private bool PositiveArea (float p1x, float p1y, float p2x, float p2y, float p3x, float p3y) {
- return p1x * (p3y - p2y) + p2x * (p1y - p3y) + p3x * (p2y - p1y) >= 0;
- }
- static private int Winding (float p1x, float p1y, float p2x, float p2y, float p3x, float p3y) {
- float px = p2x - p1x, py = p2y - p1y;
- return p3x * py - p3y * px + px * p1y - p1x * py >= 0 ? 1 : -1;
- }
- }
- }
|