/******************************************************************************
* Spine Runtimes License Agreement
* Last updated January 1, 2020. Replaces all prior versions.
*
* Copyright (c) 2013-2020, Esoteric Software LLC
*
* Integration of the Spine Runtimes into software or otherwise creating
* derivative works of the Spine Runtimes is permitted under the terms and
* conditions of Section 2 of the Spine Editor License Agreement:
* http://esotericsoftware.com/spine-editor-license
*
* Otherwise, it is permitted to integrate the Spine Runtimes into software
* or otherwise create derivative works of the Spine Runtimes (collectively,
* "Products"), provided that each user of the Products must obtain their own
* Spine Editor license and redistribution of the Products in any form must
* include this license and copyright notice.
*
* THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES,
* BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THE SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
using System;
namespace Spine {
///
///
/// Stores the current pose for an IK constraint. An IK constraint adjusts the rotation of 1 or 2 constrained bones so the tip of
/// the last bone is as close to the target bone as possible.
///
/// See IK constraints in the Spine User Guide.
///
public class IkConstraint : IUpdatable {
internal IkConstraintData data;
internal ExposedList bones = new ExposedList();
internal Bone target;
internal int bendDirection;
internal bool compress, stretch;
internal float mix = 1, softness;
internal bool active;
public IkConstraint (IkConstraintData data, Skeleton skeleton) {
if (data == null) throw new ArgumentNullException("data", "data cannot be null.");
if (skeleton == null) throw new ArgumentNullException("skeleton", "skeleton cannot be null.");
this.data = data;
mix = data.mix;
softness = data.softness;
bendDirection = data.bendDirection;
compress = data.compress;
stretch = data.stretch;
bones = new ExposedList(data.bones.Count);
foreach (BoneData boneData in data.bones)
bones.Add(skeleton.FindBone(boneData.name));
target = skeleton.FindBone(data.target.name);
}
/// Copy constructor.
public IkConstraint (IkConstraint constraint, Skeleton skeleton) {
if (constraint == null) throw new ArgumentNullException("constraint cannot be null.");
if (skeleton == null) throw new ArgumentNullException("skeleton cannot be null.");
data = constraint.data;
bones = new ExposedList(constraint.Bones.Count);
foreach (Bone bone in constraint.Bones)
bones.Add(skeleton.Bones.Items[bone.data.index]);
target = skeleton.Bones.Items[constraint.target.data.index];
mix = constraint.mix;
softness = constraint.softness;
bendDirection = constraint.bendDirection;
compress = constraint.compress;
stretch = constraint.stretch;
}
/// Applies the constraint to the constrained bones.
public void Apply () {
Update();
}
public void Update () {
Bone target = this.target;
ExposedList bones = this.bones;
switch (bones.Count) {
case 1:
Apply(bones.Items[0], target.worldX, target.worldY, compress, stretch, data.uniform, mix);
break;
case 2:
Apply(bones.Items[0], bones.Items[1], target.worldX, target.worldY, bendDirection, stretch, softness, mix);
break;
}
}
/// The bones that will be modified by this IK constraint.
public ExposedList Bones {
get { return bones; }
}
/// The bone that is the IK target.
public Bone Target {
get { return target; }
set { target = value; }
}
/// A percentage (0-1) that controls the mix between the constrained and unconstrained rotations.
public float Mix {
get { return mix; }
set { mix = value; }
}
///For two bone IK, the distance from the maximum reach of the bones that rotation will slow.
public float Softness {
get { return softness; }
set { softness = value; }
}
/// Controls the bend direction of the IK bones, either 1 or -1.
public int BendDirection {
get { return bendDirection; }
set { bendDirection = value; }
}
///
/// When true and only a single bone is being constrained, if the target is too close, the bone is scaled to reach it.
public bool Compress {
get { return compress; }
set { compress = value; }
}
///
/// When true, if the target is out of range, the parent bone is scaled to reach it. If more than one bone is being constrained
/// and the parent bone has local nonuniform scale, stretch is not applied.
public bool Stretch {
get { return stretch; }
set { stretch = value; }
}
public bool Active {
get { return active; }
}
/// The IK constraint's setup pose data.
public IkConstraintData Data {
get { return data; }
}
override public string ToString () {
return data.name;
}
/// Applies 1 bone IK. The target is specified in the world coordinate system.
static public void Apply (Bone bone, float targetX, float targetY, bool compress, bool stretch, bool uniform,
float alpha) {
if (!bone.appliedValid) bone.UpdateAppliedTransform();
Bone p = bone.parent;
float pa = p.a, pb = p.b, pc = p.c, pd = p.d;
float rotationIK = -bone.ashearX - bone.arotation;
float tx = 0, ty = 0;
switch(bone.data.transformMode) {
case TransformMode.OnlyTranslation:
tx = targetX - bone.worldX;
ty = targetY - bone.worldY;
break;
case TransformMode.NoRotationOrReflection: {
float s = Math.Abs(pa * pd - pb * pc) / (pa * pa + pc * pc);
float sa = pa / bone.skeleton.ScaleX;
float sc = pc / bone.skeleton.ScaleY;
pb = -sc * s * bone.skeleton.ScaleX;
pd = sa * s * bone.skeleton.ScaleY;
rotationIK += (float)Math.Atan2(pc, pa) * MathUtils.RadDeg;
goto default; // Fall through.
}
default: {
float x = targetX - p.worldX, y = targetY - p.worldY;
float d = pa * pd - pb * pc;
tx = (x * pd - y * pb) / d - bone.ax;
ty = (y * pa - x * pc) / d - bone.ay;
break;
}
}
rotationIK += (float)Math.Atan2(ty, tx) * MathUtils.RadDeg;
if (bone.ascaleX < 0) rotationIK += 180;
if (rotationIK > 180)
rotationIK -= 360;
else if (rotationIK < -180) //
rotationIK += 360;
float sx = bone.ascaleX, sy = bone.ascaleY;
if (compress || stretch) {
switch (bone.data.transformMode) {
case TransformMode.NoScale:
tx = targetX - bone.worldX;
ty = targetY - bone.worldY;
break;
case TransformMode.NoScaleOrReflection:
tx = targetX - bone.worldX;
ty = targetY - bone.worldY;
break;
}
float b = bone.data.length * sx, dd = (float)Math.Sqrt(tx * tx + ty * ty);
if ((compress && dd < b) || (stretch && dd > b) && b > 0.0001f) {
float s = (dd / b - 1) * alpha + 1;
sx *= s;
if (uniform) sy *= s;
}
}
bone.UpdateWorldTransform(bone.ax, bone.ay, bone.arotation + rotationIK * alpha, sx, sy, bone.ashearX, bone.ashearY);
}
/// Applies 2 bone IK. The target is specified in the world coordinate system.
/// A direct descendant of the parent bone.
static public void Apply (Bone parent, Bone child, float targetX, float targetY, int bendDir, bool stretch, float softness,
float alpha) {
if (alpha == 0) {
child.UpdateWorldTransform();
return;
}
if (!parent.appliedValid) parent.UpdateAppliedTransform();
if (!child.appliedValid) child.UpdateAppliedTransform();
float px = parent.ax, py = parent.ay, psx = parent.ascaleX, sx = psx, psy = parent.ascaleY, csx = child.ascaleX;
int os1, os2, s2;
if (psx < 0) {
psx = -psx;
os1 = 180;
s2 = -1;
} else {
os1 = 0;
s2 = 1;
}
if (psy < 0) {
psy = -psy;
s2 = -s2;
}
if (csx < 0) {
csx = -csx;
os2 = 180;
} else
os2 = 0;
float cx = child.ax, cy, cwx, cwy, a = parent.a, b = parent.b, c = parent.c, d = parent.d;
bool u = Math.Abs(psx - psy) <= 0.0001f;
if (!u) {
cy = 0;
cwx = a * cx + parent.worldX;
cwy = c * cx + parent.worldY;
} else {
cy = child.ay;
cwx = a * cx + b * cy + parent.worldX;
cwy = c * cx + d * cy + parent.worldY;
}
Bone pp = parent.parent;
a = pp.a;
b = pp.b;
c = pp.c;
d = pp.d;
float id = 1 / (a * d - b * c), x = cwx - pp.worldX, y = cwy - pp.worldY;
float dx = (x * d - y * b) * id - px, dy = (y * a - x * c) * id - py;
float l1 = (float)Math.Sqrt(dx * dx + dy * dy), l2 = child.data.length * csx, a1, a2;
if (l1 < 0.0001f) {
Apply(parent, targetX, targetY, false, stretch, false, alpha);
child.UpdateWorldTransform(cx, cy, 0, child.ascaleX, child.ascaleY, child.ashearX, child.ashearY);
return;
}
x = targetX - pp.worldX;
y = targetY - pp.worldY;
float tx = (x * d - y * b) * id - px, ty = (y * a - x * c) * id - py;
float dd = tx * tx + ty * ty;
if (softness != 0) {
softness *= psx * (csx + 1) / 2;
float td = (float)Math.Sqrt(dd), sd = td - l1 - l2 * psx + softness;
if (sd > 0) {
float p = Math.Min(1, sd / (softness * 2)) - 1;
p = (sd - softness * (1 - p * p)) / td;
tx -= p * tx;
ty -= p * ty;
dd = tx * tx + ty * ty;
}
}
if (u) {
l2 *= psx;
float cos = (dd - l1 * l1 - l2 * l2) / (2 * l1 * l2);
if (cos < -1)
cos = -1;
else if (cos > 1) {
cos = 1;
if (stretch) sx *= ((float)Math.Sqrt(dd) / (l1 + l2) - 1) * alpha + 1;
}
a2 = (float)Math.Acos(cos) * bendDir;
a = l1 + l2 * cos;
b = l2 * (float)Math.Sin(a2);
a1 = (float)Math.Atan2(ty * a - tx * b, tx * a + ty * b);
} else {
a = psx * l2;
b = psy * l2;
float aa = a * a, bb = b * b, ta = (float)Math.Atan2(ty, tx);
c = bb * l1 * l1 + aa * dd - aa * bb;
float c1 = -2 * bb * l1, c2 = bb - aa;
d = c1 * c1 - 4 * c2 * c;
if (d >= 0) {
float q = (float)Math.Sqrt(d);
if (c1 < 0) q = -q;
q = -(c1 + q) / 2;
float r0 = q / c2, r1 = c / q;
float r = Math.Abs(r0) < Math.Abs(r1) ? r0 : r1;
if (r * r <= dd) {
y = (float)Math.Sqrt(dd - r * r) * bendDir;
a1 = ta - (float)Math.Atan2(y, r);
a2 = (float)Math.Atan2(y / psy, (r - l1) / psx);
goto break_outer; // break outer;
}
}
float minAngle = MathUtils.PI, minX = l1 - a, minDist = minX * minX, minY = 0;
float maxAngle = 0, maxX = l1 + a, maxDist = maxX * maxX, maxY = 0;
c = -a * l1 / (aa - bb);
if (c >= -1 && c <= 1) {
c = (float)Math.Acos(c);
x = a * (float)Math.Cos(c) + l1;
y = b * (float)Math.Sin(c);
d = x * x + y * y;
if (d < minDist) {
minAngle = c;
minDist = d;
minX = x;
minY = y;
}
if (d > maxDist) {
maxAngle = c;
maxDist = d;
maxX = x;
maxY = y;
}
}
if (dd <= (minDist + maxDist) / 2) {
a1 = ta - (float)Math.Atan2(minY * bendDir, minX);
a2 = minAngle * bendDir;
} else {
a1 = ta - (float)Math.Atan2(maxY * bendDir, maxX);
a2 = maxAngle * bendDir;
}
}
break_outer:
float os = (float)Math.Atan2(cy, cx) * s2;
float rotation = parent.arotation;
a1 = (a1 - os) * MathUtils.RadDeg + os1 - rotation;
if (a1 > 180)
a1 -= 360;
else if (a1 < -180) a1 += 360;
parent.UpdateWorldTransform(px, py, rotation + a1 * alpha, sx, parent.ascaleY, 0, 0);
rotation = child.arotation;
a2 = ((a2 + os) * MathUtils.RadDeg - child.ashearX) * s2 + os2 - rotation;
if (a2 > 180)
a2 -= 360;
else if (a2 < -180) a2 += 360;
child.UpdateWorldTransform(cx, cy, rotation + a2 * alpha, child.ascaleX, child.ascaleY, child.ashearX, child.ashearY);
}
}
}