/****************************************************************************** * Spine Runtimes License Agreement * Last updated January 1, 2020. Replaces all prior versions. * * Copyright (c) 2013-2020, Esoteric Software LLC * * Integration of the Spine Runtimes into software or otherwise creating * derivative works of the Spine Runtimes is permitted under the terms and * conditions of Section 2 of the Spine Editor License Agreement: * http://esotericsoftware.com/spine-editor-license * * Otherwise, it is permitted to integrate the Spine Runtimes into software * or otherwise create derivative works of the Spine Runtimes (collectively, * "Products"), provided that each user of the Products must obtain their own * Spine Editor license and redistribution of the Products in any form must * include this license and copyright notice. * * THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, * BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THE SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ using System; namespace Spine { /// /// /// Stores the current pose for an IK constraint. An IK constraint adjusts the rotation of 1 or 2 constrained bones so the tip of /// the last bone is as close to the target bone as possible. /// /// See IK constraints in the Spine User Guide. /// public class IkConstraint : IUpdatable { internal IkConstraintData data; internal ExposedList bones = new ExposedList(); internal Bone target; internal int bendDirection; internal bool compress, stretch; internal float mix = 1, softness; internal bool active; public IkConstraint (IkConstraintData data, Skeleton skeleton) { if (data == null) throw new ArgumentNullException("data", "data cannot be null."); if (skeleton == null) throw new ArgumentNullException("skeleton", "skeleton cannot be null."); this.data = data; mix = data.mix; softness = data.softness; bendDirection = data.bendDirection; compress = data.compress; stretch = data.stretch; bones = new ExposedList(data.bones.Count); foreach (BoneData boneData in data.bones) bones.Add(skeleton.FindBone(boneData.name)); target = skeleton.FindBone(data.target.name); } /// Copy constructor. public IkConstraint (IkConstraint constraint, Skeleton skeleton) { if (constraint == null) throw new ArgumentNullException("constraint cannot be null."); if (skeleton == null) throw new ArgumentNullException("skeleton cannot be null."); data = constraint.data; bones = new ExposedList(constraint.Bones.Count); foreach (Bone bone in constraint.Bones) bones.Add(skeleton.Bones.Items[bone.data.index]); target = skeleton.Bones.Items[constraint.target.data.index]; mix = constraint.mix; softness = constraint.softness; bendDirection = constraint.bendDirection; compress = constraint.compress; stretch = constraint.stretch; } /// Applies the constraint to the constrained bones. public void Apply () { Update(); } public void Update () { Bone target = this.target; ExposedList bones = this.bones; switch (bones.Count) { case 1: Apply(bones.Items[0], target.worldX, target.worldY, compress, stretch, data.uniform, mix); break; case 2: Apply(bones.Items[0], bones.Items[1], target.worldX, target.worldY, bendDirection, stretch, softness, mix); break; } } /// The bones that will be modified by this IK constraint. public ExposedList Bones { get { return bones; } } /// The bone that is the IK target. public Bone Target { get { return target; } set { target = value; } } /// A percentage (0-1) that controls the mix between the constrained and unconstrained rotations. public float Mix { get { return mix; } set { mix = value; } } ///For two bone IK, the distance from the maximum reach of the bones that rotation will slow. public float Softness { get { return softness; } set { softness = value; } } /// Controls the bend direction of the IK bones, either 1 or -1. public int BendDirection { get { return bendDirection; } set { bendDirection = value; } } /// /// When true and only a single bone is being constrained, if the target is too close, the bone is scaled to reach it. public bool Compress { get { return compress; } set { compress = value; } } /// /// When true, if the target is out of range, the parent bone is scaled to reach it. If more than one bone is being constrained /// and the parent bone has local nonuniform scale, stretch is not applied. public bool Stretch { get { return stretch; } set { stretch = value; } } public bool Active { get { return active; } } /// The IK constraint's setup pose data. public IkConstraintData Data { get { return data; } } override public string ToString () { return data.name; } /// Applies 1 bone IK. The target is specified in the world coordinate system. static public void Apply (Bone bone, float targetX, float targetY, bool compress, bool stretch, bool uniform, float alpha) { if (!bone.appliedValid) bone.UpdateAppliedTransform(); Bone p = bone.parent; float pa = p.a, pb = p.b, pc = p.c, pd = p.d; float rotationIK = -bone.ashearX - bone.arotation; float tx = 0, ty = 0; switch(bone.data.transformMode) { case TransformMode.OnlyTranslation: tx = targetX - bone.worldX; ty = targetY - bone.worldY; break; case TransformMode.NoRotationOrReflection: { float s = Math.Abs(pa * pd - pb * pc) / (pa * pa + pc * pc); float sa = pa / bone.skeleton.ScaleX; float sc = pc / bone.skeleton.ScaleY; pb = -sc * s * bone.skeleton.ScaleX; pd = sa * s * bone.skeleton.ScaleY; rotationIK += (float)Math.Atan2(pc, pa) * MathUtils.RadDeg; goto default; // Fall through. } default: { float x = targetX - p.worldX, y = targetY - p.worldY; float d = pa * pd - pb * pc; tx = (x * pd - y * pb) / d - bone.ax; ty = (y * pa - x * pc) / d - bone.ay; break; } } rotationIK += (float)Math.Atan2(ty, tx) * MathUtils.RadDeg; if (bone.ascaleX < 0) rotationIK += 180; if (rotationIK > 180) rotationIK -= 360; else if (rotationIK < -180) // rotationIK += 360; float sx = bone.ascaleX, sy = bone.ascaleY; if (compress || stretch) { switch (bone.data.transformMode) { case TransformMode.NoScale: tx = targetX - bone.worldX; ty = targetY - bone.worldY; break; case TransformMode.NoScaleOrReflection: tx = targetX - bone.worldX; ty = targetY - bone.worldY; break; } float b = bone.data.length * sx, dd = (float)Math.Sqrt(tx * tx + ty * ty); if ((compress && dd < b) || (stretch && dd > b) && b > 0.0001f) { float s = (dd / b - 1) * alpha + 1; sx *= s; if (uniform) sy *= s; } } bone.UpdateWorldTransform(bone.ax, bone.ay, bone.arotation + rotationIK * alpha, sx, sy, bone.ashearX, bone.ashearY); } /// Applies 2 bone IK. The target is specified in the world coordinate system. /// A direct descendant of the parent bone. static public void Apply (Bone parent, Bone child, float targetX, float targetY, int bendDir, bool stretch, float softness, float alpha) { if (alpha == 0) { child.UpdateWorldTransform(); return; } if (!parent.appliedValid) parent.UpdateAppliedTransform(); if (!child.appliedValid) child.UpdateAppliedTransform(); float px = parent.ax, py = parent.ay, psx = parent.ascaleX, sx = psx, psy = parent.ascaleY, csx = child.ascaleX; int os1, os2, s2; if (psx < 0) { psx = -psx; os1 = 180; s2 = -1; } else { os1 = 0; s2 = 1; } if (psy < 0) { psy = -psy; s2 = -s2; } if (csx < 0) { csx = -csx; os2 = 180; } else os2 = 0; float cx = child.ax, cy, cwx, cwy, a = parent.a, b = parent.b, c = parent.c, d = parent.d; bool u = Math.Abs(psx - psy) <= 0.0001f; if (!u) { cy = 0; cwx = a * cx + parent.worldX; cwy = c * cx + parent.worldY; } else { cy = child.ay; cwx = a * cx + b * cy + parent.worldX; cwy = c * cx + d * cy + parent.worldY; } Bone pp = parent.parent; a = pp.a; b = pp.b; c = pp.c; d = pp.d; float id = 1 / (a * d - b * c), x = cwx - pp.worldX, y = cwy - pp.worldY; float dx = (x * d - y * b) * id - px, dy = (y * a - x * c) * id - py; float l1 = (float)Math.Sqrt(dx * dx + dy * dy), l2 = child.data.length * csx, a1, a2; if (l1 < 0.0001f) { Apply(parent, targetX, targetY, false, stretch, false, alpha); child.UpdateWorldTransform(cx, cy, 0, child.ascaleX, child.ascaleY, child.ashearX, child.ashearY); return; } x = targetX - pp.worldX; y = targetY - pp.worldY; float tx = (x * d - y * b) * id - px, ty = (y * a - x * c) * id - py; float dd = tx * tx + ty * ty; if (softness != 0) { softness *= psx * (csx + 1) / 2; float td = (float)Math.Sqrt(dd), sd = td - l1 - l2 * psx + softness; if (sd > 0) { float p = Math.Min(1, sd / (softness * 2)) - 1; p = (sd - softness * (1 - p * p)) / td; tx -= p * tx; ty -= p * ty; dd = tx * tx + ty * ty; } } if (u) { l2 *= psx; float cos = (dd - l1 * l1 - l2 * l2) / (2 * l1 * l2); if (cos < -1) cos = -1; else if (cos > 1) { cos = 1; if (stretch) sx *= ((float)Math.Sqrt(dd) / (l1 + l2) - 1) * alpha + 1; } a2 = (float)Math.Acos(cos) * bendDir; a = l1 + l2 * cos; b = l2 * (float)Math.Sin(a2); a1 = (float)Math.Atan2(ty * a - tx * b, tx * a + ty * b); } else { a = psx * l2; b = psy * l2; float aa = a * a, bb = b * b, ta = (float)Math.Atan2(ty, tx); c = bb * l1 * l1 + aa * dd - aa * bb; float c1 = -2 * bb * l1, c2 = bb - aa; d = c1 * c1 - 4 * c2 * c; if (d >= 0) { float q = (float)Math.Sqrt(d); if (c1 < 0) q = -q; q = -(c1 + q) / 2; float r0 = q / c2, r1 = c / q; float r = Math.Abs(r0) < Math.Abs(r1) ? r0 : r1; if (r * r <= dd) { y = (float)Math.Sqrt(dd - r * r) * bendDir; a1 = ta - (float)Math.Atan2(y, r); a2 = (float)Math.Atan2(y / psy, (r - l1) / psx); goto break_outer; // break outer; } } float minAngle = MathUtils.PI, minX = l1 - a, minDist = minX * minX, minY = 0; float maxAngle = 0, maxX = l1 + a, maxDist = maxX * maxX, maxY = 0; c = -a * l1 / (aa - bb); if (c >= -1 && c <= 1) { c = (float)Math.Acos(c); x = a * (float)Math.Cos(c) + l1; y = b * (float)Math.Sin(c); d = x * x + y * y; if (d < minDist) { minAngle = c; minDist = d; minX = x; minY = y; } if (d > maxDist) { maxAngle = c; maxDist = d; maxX = x; maxY = y; } } if (dd <= (minDist + maxDist) / 2) { a1 = ta - (float)Math.Atan2(minY * bendDir, minX); a2 = minAngle * bendDir; } else { a1 = ta - (float)Math.Atan2(maxY * bendDir, maxX); a2 = maxAngle * bendDir; } } break_outer: float os = (float)Math.Atan2(cy, cx) * s2; float rotation = parent.arotation; a1 = (a1 - os) * MathUtils.RadDeg + os1 - rotation; if (a1 > 180) a1 -= 360; else if (a1 < -180) a1 += 360; parent.UpdateWorldTransform(px, py, rotation + a1 * alpha, sx, parent.ascaleY, 0, 0); rotation = child.arotation; a2 = ((a2 + os) * MathUtils.RadDeg - child.ashearX) * s2 + os2 - rotation; if (a2 > 180) a2 -= 360; else if (a2 < -180) a2 += 360; child.UpdateWorldTransform(cx, cy, rotation + a2 * alpha, child.ascaleX, child.ascaleY, child.ashearX, child.ashearY); } } }