/****************************************************************************** * Spine Runtimes License Agreement * Last updated January 1, 2020. Replaces all prior versions. * * Copyright (c) 2013-2020, Esoteric Software LLC * * Integration of the Spine Runtimes into software or otherwise creating * derivative works of the Spine Runtimes is permitted under the terms and * conditions of Section 2 of the Spine Editor License Agreement: * http://esotericsoftware.com/spine-editor-license * * Otherwise, it is permitted to integrate the Spine Runtimes into software * or otherwise create derivative works of the Spine Runtimes (collectively, * "Products"), provided that each user of the Products must obtain their own * Spine Editor license and redistribution of the Products in any form must * include this license and copyright notice. * * THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, * BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THE SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ using System; namespace Spine { /// /// Stores a bone's current pose. /// /// A bone has a local transform which is used to compute its world transform. A bone also has an applied transform, which is a /// local transform that can be applied to compute the world transform. The local transform and applied transform may differ if a /// constraint or application code modifies the world transform after it was computed from the local transform. /// /// public class Bone : IUpdatable { static public bool yDown; internal BoneData data; internal Skeleton skeleton; internal Bone parent; internal ExposedList children = new ExposedList(); internal float x, y, rotation, scaleX, scaleY, shearX, shearY; internal float ax, ay, arotation, ascaleX, ascaleY, ashearX, ashearY; internal bool appliedValid; internal float a, b, worldX; internal float c, d, worldY; internal bool sorted, active; public BoneData Data { get { return data; } } public Skeleton Skeleton { get { return skeleton; } } public Bone Parent { get { return parent; } } public ExposedList Children { get { return children; } } /// Returns false when the bone has not been computed because is true and the /// active skin does not contain this bone. public bool Active { get { return active; } } /// The local X translation. public float X { get { return x; } set { x = value; } } /// The local Y translation. public float Y { get { return y; } set { y = value; } } /// The local rotation. public float Rotation { get { return rotation; } set { rotation = value; } } /// The local scaleX. public float ScaleX { get { return scaleX; } set { scaleX = value; } } /// The local scaleY. public float ScaleY { get { return scaleY; } set { scaleY = value; } } /// The local shearX. public float ShearX { get { return shearX; } set { shearX = value; } } /// The local shearY. public float ShearY { get { return shearY; } set { shearY = value; } } /// The rotation, as calculated by any constraints. public float AppliedRotation { get { return arotation; } set { arotation = value; } } /// The applied local x translation. public float AX { get { return ax; } set { ax = value; } } /// The applied local y translation. public float AY { get { return ay; } set { ay = value; } } /// The applied local scaleX. public float AScaleX { get { return ascaleX; } set { ascaleX = value; } } /// The applied local scaleY. public float AScaleY { get { return ascaleY; } set { ascaleY = value; } } /// The applied local shearX. public float AShearX { get { return ashearX; } set { ashearX = value; } } /// The applied local shearY. public float AShearY { get { return ashearY; } set { ashearY = value; } } public float A { get { return a; } } public float B { get { return b; } } public float C { get { return c; } } public float D { get { return d; } } public float WorldX { get { return worldX; } } public float WorldY { get { return worldY; } } public float WorldRotationX { get { return MathUtils.Atan2(c, a) * MathUtils.RadDeg; } } public float WorldRotationY { get { return MathUtils.Atan2(d, b) * MathUtils.RadDeg; } } /// Returns the magnitide (always positive) of the world scale X. public float WorldScaleX { get { return (float)Math.Sqrt(a * a + c * c); } } /// Returns the magnitide (always positive) of the world scale Y. public float WorldScaleY { get { return (float)Math.Sqrt(b * b + d * d); } } /// May be null. public Bone (BoneData data, Skeleton skeleton, Bone parent) { if (data == null) throw new ArgumentNullException("data", "data cannot be null."); if (skeleton == null) throw new ArgumentNullException("skeleton", "skeleton cannot be null."); this.data = data; this.skeleton = skeleton; this.parent = parent; SetToSetupPose(); } /// Same as . This method exists for Bone to implement . public void Update () { UpdateWorldTransform(x, y, rotation, scaleX, scaleY, shearX, shearY); } /// Computes the world transform using the parent bone and this bone's local transform. public void UpdateWorldTransform () { UpdateWorldTransform(x, y, rotation, scaleX, scaleY, shearX, shearY); } /// Computes the world transform using the parent bone and the specified local transform. public void UpdateWorldTransform (float x, float y, float rotation, float scaleX, float scaleY, float shearX, float shearY) { ax = x; ay = y; arotation = rotation; ascaleX = scaleX; ascaleY = scaleY; ashearX = shearX; ashearY = shearY; appliedValid = true; Skeleton skeleton = this.skeleton; Bone parent = this.parent; if (parent == null) { // Root bone. float rotationY = rotation + 90 + shearY, sx = skeleton.ScaleX, sy = skeleton.ScaleY; a = MathUtils.CosDeg(rotation + shearX) * scaleX * sx; b = MathUtils.CosDeg(rotationY) * scaleY * sx; c = MathUtils.SinDeg(rotation + shearX) * scaleX * sy; d = MathUtils.SinDeg(rotationY) * scaleY * sy; worldX = x * sx + skeleton.x; worldY = y * sy + skeleton.y; return; } float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d; worldX = pa * x + pb * y + parent.worldX; worldY = pc * x + pd * y + parent.worldY; switch (data.transformMode) { case TransformMode.Normal: { float rotationY = rotation + 90 + shearY; float la = MathUtils.CosDeg(rotation + shearX) * scaleX; float lb = MathUtils.CosDeg(rotationY) * scaleY; float lc = MathUtils.SinDeg(rotation + shearX) * scaleX; float ld = MathUtils.SinDeg(rotationY) * scaleY; a = pa * la + pb * lc; b = pa * lb + pb * ld; c = pc * la + pd * lc; d = pc * lb + pd * ld; return; } case TransformMode.OnlyTranslation: { float rotationY = rotation + 90 + shearY; a = MathUtils.CosDeg(rotation + shearX) * scaleX; b = MathUtils.CosDeg(rotationY) * scaleY; c = MathUtils.SinDeg(rotation + shearX) * scaleX; d = MathUtils.SinDeg(rotationY) * scaleY; break; } case TransformMode.NoRotationOrReflection: { float s = pa * pa + pc * pc, prx; if (s > 0.0001f) { s = Math.Abs(pa * pd - pb * pc) / s; pa /= skeleton.ScaleX; pc /= skeleton.ScaleY; pb = pc * s; pd = pa * s; prx = MathUtils.Atan2(pc, pa) * MathUtils.RadDeg; } else { pa = 0; pc = 0; prx = 90 - MathUtils.Atan2(pd, pb) * MathUtils.RadDeg; } float rx = rotation + shearX - prx; float ry = rotation + shearY - prx + 90; float la = MathUtils.CosDeg(rx) * scaleX; float lb = MathUtils.CosDeg(ry) * scaleY; float lc = MathUtils.SinDeg(rx) * scaleX; float ld = MathUtils.SinDeg(ry) * scaleY; a = pa * la - pb * lc; b = pa * lb - pb * ld; c = pc * la + pd * lc; d = pc * lb + pd * ld; break; } case TransformMode.NoScale: case TransformMode.NoScaleOrReflection: { float cos = MathUtils.CosDeg(rotation), sin = MathUtils.SinDeg(rotation); float za = (pa * cos + pb * sin) / skeleton.ScaleX; float zc = (pc * cos + pd * sin) / skeleton.ScaleY; float s = (float)Math.Sqrt(za * za + zc * zc); if (s > 0.00001f) s = 1 / s; za *= s; zc *= s; s = (float)Math.Sqrt(za * za + zc * zc); if (data.transformMode == TransformMode.NoScale && (pa * pd - pb * pc < 0) != (skeleton.ScaleX < 0 != skeleton.ScaleY < 0)) s = -s; float r = MathUtils.PI / 2 + MathUtils.Atan2(zc, za); float zb = MathUtils.Cos(r) * s; float zd = MathUtils.Sin(r) * s; float la = MathUtils.CosDeg(shearX) * scaleX; float lb = MathUtils.CosDeg(90 + shearY) * scaleY; float lc = MathUtils.SinDeg(shearX) * scaleX; float ld = MathUtils.SinDeg(90 + shearY) * scaleY; a = za * la + zb * lc; b = za * lb + zb * ld; c = zc * la + zd * lc; d = zc * lb + zd * ld; break; } } a *= skeleton.ScaleX; b *= skeleton.ScaleX; c *= skeleton.ScaleY; d *= skeleton.ScaleY; } public void SetToSetupPose () { BoneData data = this.data; x = data.x; y = data.y; rotation = data.rotation; scaleX = data.scaleX; scaleY = data.scaleY; shearX = data.shearX; shearY = data.shearY; } /// /// Computes the individual applied transform values from the world transform. This can be useful to perform processing using /// the applied transform after the world transform has been modified directly (eg, by a constraint).. /// /// Some information is ambiguous in the world transform, such as -1,-1 scale versus 180 rotation. /// internal void UpdateAppliedTransform () { appliedValid = true; Bone parent = this.parent; if (parent == null) { ax = worldX; ay = worldY; arotation = MathUtils.Atan2(c, a) * MathUtils.RadDeg; ascaleX = (float)Math.Sqrt(a * a + c * c); ascaleY = (float)Math.Sqrt(b * b + d * d); ashearX = 0; ashearY = MathUtils.Atan2(a * b + c * d, a * d - b * c) * MathUtils.RadDeg; return; } float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d; float pid = 1 / (pa * pd - pb * pc); float dx = worldX - parent.worldX, dy = worldY - parent.worldY; ax = (dx * pd * pid - dy * pb * pid); ay = (dy * pa * pid - dx * pc * pid); float ia = pid * pd; float id = pid * pa; float ib = pid * pb; float ic = pid * pc; float ra = ia * a - ib * c; float rb = ia * b - ib * d; float rc = id * c - ic * a; float rd = id * d - ic * b; ashearX = 0; ascaleX = (float)Math.Sqrt(ra * ra + rc * rc); if (ascaleX > 0.0001f) { float det = ra * rd - rb * rc; ascaleY = det / ascaleX; ashearY = MathUtils.Atan2(ra * rb + rc * rd, det) * MathUtils.RadDeg; arotation = MathUtils.Atan2(rc, ra) * MathUtils.RadDeg; } else { ascaleX = 0; ascaleY = (float)Math.Sqrt(rb * rb + rd * rd); ashearY = 0; arotation = 90 - MathUtils.Atan2(rd, rb) * MathUtils.RadDeg; } } public void WorldToLocal (float worldX, float worldY, out float localX, out float localY) { float a = this.a, b = this.b, c = this.c, d = this.d; float invDet = 1 / (a * d - b * c); float x = worldX - this.worldX, y = worldY - this.worldY; localX = (x * d * invDet - y * b * invDet); localY = (y * a * invDet - x * c * invDet); } public void LocalToWorld (float localX, float localY, out float worldX, out float worldY) { worldX = localX * a + localY * b + this.worldX; worldY = localX * c + localY * d + this.worldY; } public float WorldToLocalRotationX { get { Bone parent = this.parent; if (parent == null) return arotation; float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d, a = this.a, c = this.c; return MathUtils.Atan2(pa * c - pc * a, pd * a - pb * c) * MathUtils.RadDeg; } } public float WorldToLocalRotationY { get { Bone parent = this.parent; if (parent == null) return arotation; float pa = parent.a, pb = parent.b, pc = parent.c, pd = parent.d, b = this.b, d = this.d; return MathUtils.Atan2(pa * d - pc * b, pd * b - pb * d) * MathUtils.RadDeg; } } public float WorldToLocalRotation (float worldRotation) { float sin = MathUtils.SinDeg(worldRotation), cos = MathUtils.CosDeg(worldRotation); return MathUtils.Atan2(a * sin - c * cos, d * cos - b * sin) * MathUtils.RadDeg + rotation - shearX; } public float LocalToWorldRotation (float localRotation) { localRotation -= rotation - shearX; float sin = MathUtils.SinDeg(localRotation), cos = MathUtils.CosDeg(localRotation); return MathUtils.Atan2(cos * c + sin * d, cos * a + sin * b) * MathUtils.RadDeg; } /// /// Rotates the world transform the specified amount and sets isAppliedValid to false. /// /// Degrees. public void RotateWorld (float degrees) { float a = this.a, b = this.b, c = this.c, d = this.d; float cos = MathUtils.CosDeg(degrees), sin = MathUtils.SinDeg(degrees); this.a = cos * a - sin * c; this.b = cos * b - sin * d; this.c = sin * a + cos * c; this.d = sin * b + cos * d; appliedValid = false; } override public string ToString () { return data.name; } } }