/****************************************************************************** * Spine Runtimes License Agreement * Last updated January 1, 2020. Replaces all prior versions. * * Copyright (c) 2013-2020, Esoteric Software LLC * * Integration of the Spine Runtimes into software or otherwise creating * derivative works of the Spine Runtimes is permitted under the terms and * conditions of Section 2 of the Spine Editor License Agreement: * http://esotericsoftware.com/spine-editor-license * * Otherwise, it is permitted to integrate the Spine Runtimes into software * or otherwise create derivative works of the Spine Runtimes (collectively, * "Products"), provided that each user of the Products must obtain their own * Spine Editor license and redistribution of the Products in any form must * include this license and copyright notice. * * THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, * BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THE SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ //#define USE_FAST_SIN_COS_ATAN2_APPROXIMATIONS using System; namespace Spine { public static class MathUtils { public const float PI = 3.1415927f; public const float PI2 = PI * 2; public const float RadDeg = 180f / PI; public const float DegRad = PI / 180; static Random random = new Random(); #if USE_FAST_SIN_COS_ATAN2_APPROXIMATIONS const int SIN_BITS = 14; // 16KB. Adjust for accuracy. const int SIN_MASK = ~(-1 << SIN_BITS); const int SIN_COUNT = SIN_MASK + 1; const float RadFull = PI * 2; const float DegFull = 360; const float RadToIndex = SIN_COUNT / RadFull; const float DegToIndex = SIN_COUNT / DegFull; static float[] sin = new float[SIN_COUNT]; static MathUtils () { for (int i = 0; i < SIN_COUNT; i++) sin[i] = (float)Math.Sin((i + 0.5f) / SIN_COUNT * RadFull); for (int i = 0; i < 360; i += 90) sin[(int)(i * DegToIndex) & SIN_MASK] = (float)Math.Sin(i * DegRad); } /// Returns the sine of a given angle in radians from a lookup table. static public float Sin (float radians) { return sin[(int)(radians * RadToIndex) & SIN_MASK]; } /// Returns the cosine of a given angle in radians from a lookup table. static public float Cos (float radians) { return sin[(int)((radians + PI / 2) * RadToIndex) & SIN_MASK]; } /// Returns the sine of a given angle in degrees from a lookup table. static public float SinDeg (float degrees) { return sin[(int)(degrees * DegToIndex) & SIN_MASK]; } /// Returns the cosine of a given angle in degrees from a lookup table. static public float CosDeg (float degrees) { return sin[(int)((degrees + 90) * DegToIndex) & SIN_MASK]; } /// Returns atan2 in radians, faster but less accurate than Math.Atan2. Average error of 0.00231 radians (0.1323 /// degrees), largest error of 0.00488 radians (0.2796 degrees). static public float Atan2 (float y, float x) { if (x == 0f) { if (y > 0f) return PI / 2; if (y == 0f) return 0f; return -PI / 2; } float atan, z = y / x; if (Math.Abs(z) < 1f) { atan = z / (1f + 0.28f * z * z); if (x < 0f) return atan + (y < 0f ? -PI : PI); return atan; } atan = PI / 2 - z / (z * z + 0.28f); return y < 0f ? atan - PI : atan; } #else /// Returns the sine of a given angle in radians. static public float Sin (float radians) { return (float)Math.Sin(radians); } /// Returns the cosine of a given angle in radians. static public float Cos (float radians) { return (float)Math.Cos(radians); } /// Returns the sine of a given angle in degrees. static public float SinDeg (float degrees) { return (float)Math.Sin(degrees * DegRad); } /// Returns the cosine of a given angle in degrees. static public float CosDeg (float degrees) { return (float)Math.Cos(degrees * DegRad); } /// Returns the atan2 using Math.Atan2. static public float Atan2 (float y, float x) { return (float)Math.Atan2(y, x); } #endif static public float Clamp (float value, float min, float max) { if (value < min) return min; if (value > max) return max; return value; } static public float RandomTriangle(float min, float max) { return RandomTriangle(min, max, (min + max) * 0.5f); } static public float RandomTriangle(float min, float max, float mode) { float u = (float)random.NextDouble(); float d = max - min; if (u <= (mode - min) / d) return min + (float)Math.Sqrt(u * d * (mode - min)); return max - (float)Math.Sqrt((1 - u) * d * (max - mode)); } } public abstract class IInterpolation { public static IInterpolation Pow2 = new Pow(2); public static IInterpolation Pow2Out = new PowOut(2); protected abstract float Apply(float a); public float Apply(float start, float end, float a) { return start + (end - start) * Apply(a); } } public class Pow: IInterpolation { public float Power { get; set; } public Pow(float power) { Power = power; } protected override float Apply(float a) { if (a <= 0.5f) return (float)Math.Pow(a * 2, Power) / 2; return (float)Math.Pow((a - 1) * 2, Power) / (Power % 2 == 0 ? -2 : 2) + 1; } } public class PowOut : Pow { public PowOut(float power) : base(power) { } protected override float Apply(float a) { return (float)Math.Pow(a - 1, Power) * (Power % 2 == 0 ? -1 : 1) + 1; } } }