/******************************************************************************
* Spine Runtimes License Agreement
* Last updated January 1, 2020. Replaces all prior versions.
*
* Copyright (c) 2013-2020, Esoteric Software LLC
*
* Integration of the Spine Runtimes into software or otherwise creating
* derivative works of the Spine Runtimes is permitted under the terms and
* conditions of Section 2 of the Spine Editor License Agreement:
* http://esotericsoftware.com/spine-editor-license
*
* Otherwise, it is permitted to integrate the Spine Runtimes into software
* or otherwise create derivative works of the Spine Runtimes (collectively,
* "Products"), provided that each user of the Products must obtain their own
* Spine Editor license and redistribution of the Products in any form must
* include this license and copyright notice.
*
* THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES,
* BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THE SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
//#define USE_FAST_SIN_COS_ATAN2_APPROXIMATIONS
using System;
namespace Spine {
public static class MathUtils {
public const float PI = 3.1415927f;
public const float PI2 = PI * 2;
public const float RadDeg = 180f / PI;
public const float DegRad = PI / 180;
static Random random = new Random();
#if USE_FAST_SIN_COS_ATAN2_APPROXIMATIONS
const int SIN_BITS = 14; // 16KB. Adjust for accuracy.
const int SIN_MASK = ~(-1 << SIN_BITS);
const int SIN_COUNT = SIN_MASK + 1;
const float RadFull = PI * 2;
const float DegFull = 360;
const float RadToIndex = SIN_COUNT / RadFull;
const float DegToIndex = SIN_COUNT / DegFull;
static float[] sin = new float[SIN_COUNT];
static MathUtils () {
for (int i = 0; i < SIN_COUNT; i++)
sin[i] = (float)Math.Sin((i + 0.5f) / SIN_COUNT * RadFull);
for (int i = 0; i < 360; i += 90)
sin[(int)(i * DegToIndex) & SIN_MASK] = (float)Math.Sin(i * DegRad);
}
/// Returns the sine of a given angle in radians from a lookup table.
static public float Sin (float radians) {
return sin[(int)(radians * RadToIndex) & SIN_MASK];
}
/// Returns the cosine of a given angle in radians from a lookup table.
static public float Cos (float radians) {
return sin[(int)((radians + PI / 2) * RadToIndex) & SIN_MASK];
}
/// Returns the sine of a given angle in degrees from a lookup table.
static public float SinDeg (float degrees) {
return sin[(int)(degrees * DegToIndex) & SIN_MASK];
}
/// Returns the cosine of a given angle in degrees from a lookup table.
static public float CosDeg (float degrees) {
return sin[(int)((degrees + 90) * DegToIndex) & SIN_MASK];
}
/// Returns atan2 in radians, faster but less accurate than Math.Atan2. Average error of 0.00231 radians (0.1323
/// degrees), largest error of 0.00488 radians (0.2796 degrees).
static public float Atan2 (float y, float x) {
if (x == 0f) {
if (y > 0f) return PI / 2;
if (y == 0f) return 0f;
return -PI / 2;
}
float atan, z = y / x;
if (Math.Abs(z) < 1f) {
atan = z / (1f + 0.28f * z * z);
if (x < 0f) return atan + (y < 0f ? -PI : PI);
return atan;
}
atan = PI / 2 - z / (z * z + 0.28f);
return y < 0f ? atan - PI : atan;
}
#else
/// Returns the sine of a given angle in radians.
static public float Sin (float radians) {
return (float)Math.Sin(radians);
}
/// Returns the cosine of a given angle in radians.
static public float Cos (float radians) {
return (float)Math.Cos(radians);
}
/// Returns the sine of a given angle in degrees.
static public float SinDeg (float degrees) {
return (float)Math.Sin(degrees * DegRad);
}
/// Returns the cosine of a given angle in degrees.
static public float CosDeg (float degrees) {
return (float)Math.Cos(degrees * DegRad);
}
/// Returns the atan2 using Math.Atan2.
static public float Atan2 (float y, float x) {
return (float)Math.Atan2(y, x);
}
#endif
static public float Clamp (float value, float min, float max) {
if (value < min) return min;
if (value > max) return max;
return value;
}
static public float RandomTriangle(float min, float max) {
return RandomTriangle(min, max, (min + max) * 0.5f);
}
static public float RandomTriangle(float min, float max, float mode) {
float u = (float)random.NextDouble();
float d = max - min;
if (u <= (mode - min) / d) return min + (float)Math.Sqrt(u * d * (mode - min));
return max - (float)Math.Sqrt((1 - u) * d * (max - mode));
}
}
public abstract class IInterpolation {
public static IInterpolation Pow2 = new Pow(2);
public static IInterpolation Pow2Out = new PowOut(2);
protected abstract float Apply(float a);
public float Apply(float start, float end, float a) {
return start + (end - start) * Apply(a);
}
}
public class Pow: IInterpolation {
public float Power { get; set; }
public Pow(float power) {
Power = power;
}
protected override float Apply(float a) {
if (a <= 0.5f) return (float)Math.Pow(a * 2, Power) / 2;
return (float)Math.Pow((a - 1) * 2, Power) / (Power % 2 == 0 ? -2 : 2) + 1;
}
}
public class PowOut : Pow {
public PowOut(float power) : base(power) {
}
protected override float Apply(float a) {
return (float)Math.Pow(a - 1, Power) * (Power % 2 == 0 ? -1 : 1) + 1;
}
}
}