/****************************************************************************** * Spine Runtimes License Agreement * Last updated January 1, 2020. Replaces all prior versions. * * Copyright (c) 2013-2020, Esoteric Software LLC * * Integration of the Spine Runtimes into software or otherwise creating * derivative works of the Spine Runtimes is permitted under the terms and * conditions of Section 2 of the Spine Editor License Agreement: * http://esotericsoftware.com/spine-editor-license * * Otherwise, it is permitted to integrate the Spine Runtimes into software * or otherwise create derivative works of the Spine Runtimes (collectively, * "Products"), provided that each user of the Products must obtain their own * Spine Editor license and redistribution of the Products in any form must * include this license and copyright notice. * * THE SPINE RUNTIMES ARE PROVIDED BY ESOTERIC SOFTWARE LLC "AS IS" AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL ESOTERIC SOFTWARE LLC BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, * BUSINESS INTERRUPTION, OR LOSS OF USE, DATA, OR PROFITS) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THE SPINE RUNTIMES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *****************************************************************************/ using System; namespace Spine { /// /// /// Stores the current pose for a path constraint. A path constraint adjusts the rotation, translation, and scale of the /// constrained bones so they follow a {@link PathAttachment}. /// /// See Path constraints in the Spine User Guide. /// public class PathConstraint : IUpdatable { const int NONE = -1, BEFORE = -2, AFTER = -3; const float Epsilon = 0.00001f; internal PathConstraintData data; internal ExposedList bones; internal Slot target; internal float position, spacing, rotateMix, translateMix; internal bool active; internal ExposedList spaces = new ExposedList(), positions = new ExposedList(); internal ExposedList world = new ExposedList(), curves = new ExposedList(), lengths = new ExposedList(); internal float[] segments = new float[10]; public PathConstraint (PathConstraintData data, Skeleton skeleton) { if (data == null) throw new ArgumentNullException("data", "data cannot be null."); if (skeleton == null) throw new ArgumentNullException("skeleton", "skeleton cannot be null."); this.data = data; bones = new ExposedList(data.Bones.Count); foreach (BoneData boneData in data.bones) bones.Add(skeleton.FindBone(boneData.name)); target = skeleton.FindSlot(data.target.name); position = data.position; spacing = data.spacing; rotateMix = data.rotateMix; translateMix = data.translateMix; } /// Copy constructor. public PathConstraint (PathConstraint constraint, Skeleton skeleton) { if (constraint == null) throw new ArgumentNullException("constraint cannot be null."); if (skeleton == null) throw new ArgumentNullException("skeleton cannot be null."); data = constraint.data; bones = new ExposedList(constraint.Bones.Count); foreach (Bone bone in constraint.Bones) bones.Add(skeleton.Bones.Items[bone.data.index]); target = skeleton.slots.Items[constraint.target.data.index]; position = constraint.position; spacing = constraint.spacing; rotateMix = constraint.rotateMix; translateMix = constraint.translateMix; } /// Applies the constraint to the constrained bones. public void Apply () { Update(); } public void Update () { PathAttachment attachment = target.Attachment as PathAttachment; if (attachment == null) return; float rotateMix = this.rotateMix, translateMix = this.translateMix; bool translate = translateMix > 0, rotate = rotateMix > 0; if (!translate && !rotate) return; PathConstraintData data = this.data; bool percentSpacing = data.spacingMode == SpacingMode.Percent; RotateMode rotateMode = data.rotateMode; bool tangents = rotateMode == RotateMode.Tangent, scale = rotateMode == RotateMode.ChainScale; int boneCount = this.bones.Count, spacesCount = tangents ? boneCount : boneCount + 1; Bone[] bonesItems = this.bones.Items; ExposedList spaces = this.spaces.Resize(spacesCount), lengths = null; float spacing = this.spacing; if (scale || !percentSpacing) { if (scale) lengths = this.lengths.Resize(boneCount); bool lengthSpacing = data.spacingMode == SpacingMode.Length; for (int i = 0, n = spacesCount - 1; i < n;) { Bone bone = bonesItems[i]; float setupLength = bone.data.length; if (setupLength < PathConstraint.Epsilon) { if (scale) lengths.Items[i] = 0; spaces.Items[++i] = 0; } else if (percentSpacing) { if (scale) { float x = setupLength * bone.a, y = setupLength * bone.c; float length = (float)Math.Sqrt(x * x + y * y); lengths.Items[i] = length; } spaces.Items[++i] = spacing; } else { float x = setupLength * bone.a, y = setupLength * bone.c; float length = (float)Math.Sqrt(x * x + y * y); if (scale) lengths.Items[i] = length; spaces.Items[++i] = (lengthSpacing ? setupLength + spacing : spacing) * length / setupLength; } } } else { for (int i = 1; i < spacesCount; i++) spaces.Items[i] = spacing; } float[] positions = ComputeWorldPositions(attachment, spacesCount, tangents, data.positionMode == PositionMode.Percent, percentSpacing); float boneX = positions[0], boneY = positions[1], offsetRotation = data.offsetRotation; bool tip; if (offsetRotation == 0) { tip = rotateMode == RotateMode.Chain; } else { tip = false; Bone p = target.bone; offsetRotation *= p.a * p.d - p.b * p.c > 0 ? MathUtils.DegRad : -MathUtils.DegRad; } for (int i = 0, p = 3; i < boneCount; i++, p += 3) { Bone bone = bonesItems[i]; bone.worldX += (boneX - bone.worldX) * translateMix; bone.worldY += (boneY - bone.worldY) * translateMix; float x = positions[p], y = positions[p + 1], dx = x - boneX, dy = y - boneY; if (scale) { float length = lengths.Items[i]; if (length >= PathConstraint.Epsilon) { float s = ((float)Math.Sqrt(dx * dx + dy * dy) / length - 1) * rotateMix + 1; bone.a *= s; bone.c *= s; } } boneX = x; boneY = y; if (rotate) { float a = bone.a, b = bone.b, c = bone.c, d = bone.d, r, cos, sin; if (tangents) r = positions[p - 1]; else if (spaces.Items[i + 1] < PathConstraint.Epsilon) r = positions[p + 2]; else r = MathUtils.Atan2(dy, dx); r -= MathUtils.Atan2(c, a); if (tip) { cos = MathUtils.Cos(r); sin = MathUtils.Sin(r); float length = bone.data.length; boneX += (length * (cos * a - sin * c) - dx) * rotateMix; boneY += (length * (sin * a + cos * c) - dy) * rotateMix; } else r += offsetRotation; if (r > MathUtils.PI) r -= MathUtils.PI2; else if (r < -MathUtils.PI) // r += MathUtils.PI2; r *= rotateMix; cos = MathUtils.Cos(r); sin = MathUtils.Sin(r); bone.a = cos * a - sin * c; bone.b = cos * b - sin * d; bone.c = sin * a + cos * c; bone.d = sin * b + cos * d; } bone.appliedValid = false; } } float[] ComputeWorldPositions (PathAttachment path, int spacesCount, bool tangents, bool percentPosition, bool percentSpacing) { Slot target = this.target; float position = this.position; float[] spacesItems = this.spaces.Items, output = this.positions.Resize(spacesCount * 3 + 2).Items, world; bool closed = path.Closed; int verticesLength = path.WorldVerticesLength, curveCount = verticesLength / 6, prevCurve = NONE; float pathLength = 0; if (!path.ConstantSpeed) { float[] lengths = path.Lengths; curveCount -= closed ? 1 : 2; pathLength = lengths[curveCount]; if (percentPosition) position *= pathLength; if (percentSpacing) { for (int i = 1; i < spacesCount; i++) spacesItems[i] *= pathLength; } world = this.world.Resize(8).Items; for (int i = 0, o = 0, curve = 0; i < spacesCount; i++, o += 3) { float space = spacesItems[i]; position += space; float p = position; if (closed) { p %= pathLength; if (p < 0) p += pathLength; curve = 0; } else if (p < 0) { if (prevCurve != BEFORE) { prevCurve = BEFORE; path.ComputeWorldVertices(target, 2, 4, world, 0, 2); } AddBeforePosition(p, world, 0, output, o); continue; } else if (p > pathLength) { if (prevCurve != AFTER) { prevCurve = AFTER; path.ComputeWorldVertices(target, verticesLength - 6, 4, world, 0, 2); } AddAfterPosition(p - pathLength, world, 0, output, o); continue; } // Determine curve containing position. for (;; curve++) { float length = lengths[curve]; if (p > length) continue; if (curve == 0) p /= length; else { float prev = lengths[curve - 1]; p = (p - prev) / (length - prev); } break; } if (curve != prevCurve) { prevCurve = curve; if (closed && curve == curveCount) { path.ComputeWorldVertices(target, verticesLength - 4, 4, world, 0, 2); path.ComputeWorldVertices(target, 0, 4, world, 4, 2); } else path.ComputeWorldVertices(target, curve * 6 + 2, 8, world, 0, 2); } AddCurvePosition(p, world[0], world[1], world[2], world[3], world[4], world[5], world[6], world[7], output, o, tangents || (i > 0 && space < PathConstraint.Epsilon)); } return output; } // World vertices. if (closed) { verticesLength += 2; world = this.world.Resize(verticesLength).Items; path.ComputeWorldVertices(target, 2, verticesLength - 4, world, 0, 2); path.ComputeWorldVertices(target, 0, 2, world, verticesLength - 4, 2); world[verticesLength - 2] = world[0]; world[verticesLength - 1] = world[1]; } else { curveCount--; verticesLength -= 4; world = this.world.Resize(verticesLength).Items; path.ComputeWorldVertices(target, 2, verticesLength, world, 0, 2); } // Curve lengths. float[] curves = this.curves.Resize(curveCount).Items; pathLength = 0; float x1 = world[0], y1 = world[1], cx1 = 0, cy1 = 0, cx2 = 0, cy2 = 0, x2 = 0, y2 = 0; float tmpx, tmpy, dddfx, dddfy, ddfx, ddfy, dfx, dfy; for (int i = 0, w = 2; i < curveCount; i++, w += 6) { cx1 = world[w]; cy1 = world[w + 1]; cx2 = world[w + 2]; cy2 = world[w + 3]; x2 = world[w + 4]; y2 = world[w + 5]; tmpx = (x1 - cx1 * 2 + cx2) * 0.1875f; tmpy = (y1 - cy1 * 2 + cy2) * 0.1875f; dddfx = ((cx1 - cx2) * 3 - x1 + x2) * 0.09375f; dddfy = ((cy1 - cy2) * 3 - y1 + y2) * 0.09375f; ddfx = tmpx * 2 + dddfx; ddfy = tmpy * 2 + dddfy; dfx = (cx1 - x1) * 0.75f + tmpx + dddfx * 0.16666667f; dfy = (cy1 - y1) * 0.75f + tmpy + dddfy * 0.16666667f; pathLength += (float)Math.Sqrt(dfx * dfx + dfy * dfy); dfx += ddfx; dfy += ddfy; ddfx += dddfx; ddfy += dddfy; pathLength += (float)Math.Sqrt(dfx * dfx + dfy * dfy); dfx += ddfx; dfy += ddfy; pathLength += (float)Math.Sqrt(dfx * dfx + dfy * dfy); dfx += ddfx + dddfx; dfy += ddfy + dddfy; pathLength += (float)Math.Sqrt(dfx * dfx + dfy * dfy); curves[i] = pathLength; x1 = x2; y1 = y2; } if (percentPosition) position *= pathLength; else position *= pathLength / path.lengths[curveCount - 1]; if (percentSpacing) { for (int i = 1; i < spacesCount; i++) spacesItems[i] *= pathLength; } float[] segments = this.segments; float curveLength = 0; for (int i = 0, o = 0, curve = 0, segment = 0; i < spacesCount; i++, o += 3) { float space = spacesItems[i]; position += space; float p = position; if (closed) { p %= pathLength; if (p < 0) p += pathLength; curve = 0; } else if (p < 0) { AddBeforePosition(p, world, 0, output, o); continue; } else if (p > pathLength) { AddAfterPosition(p - pathLength, world, verticesLength - 4, output, o); continue; } // Determine curve containing position. for (;; curve++) { float length = curves[curve]; if (p > length) continue; if (curve == 0) p /= length; else { float prev = curves[curve - 1]; p = (p - prev) / (length - prev); } break; } // Curve segment lengths. if (curve != prevCurve) { prevCurve = curve; int ii = curve * 6; x1 = world[ii]; y1 = world[ii + 1]; cx1 = world[ii + 2]; cy1 = world[ii + 3]; cx2 = world[ii + 4]; cy2 = world[ii + 5]; x2 = world[ii + 6]; y2 = world[ii + 7]; tmpx = (x1 - cx1 * 2 + cx2) * 0.03f; tmpy = (y1 - cy1 * 2 + cy2) * 0.03f; dddfx = ((cx1 - cx2) * 3 - x1 + x2) * 0.006f; dddfy = ((cy1 - cy2) * 3 - y1 + y2) * 0.006f; ddfx = tmpx * 2 + dddfx; ddfy = tmpy * 2 + dddfy; dfx = (cx1 - x1) * 0.3f + tmpx + dddfx * 0.16666667f; dfy = (cy1 - y1) * 0.3f + tmpy + dddfy * 0.16666667f; curveLength = (float)Math.Sqrt(dfx * dfx + dfy * dfy); segments[0] = curveLength; for (ii = 1; ii < 8; ii++) { dfx += ddfx; dfy += ddfy; ddfx += dddfx; ddfy += dddfy; curveLength += (float)Math.Sqrt(dfx * dfx + dfy * dfy); segments[ii] = curveLength; } dfx += ddfx; dfy += ddfy; curveLength += (float)Math.Sqrt(dfx * dfx + dfy * dfy); segments[8] = curveLength; dfx += ddfx + dddfx; dfy += ddfy + dddfy; curveLength += (float)Math.Sqrt(dfx * dfx + dfy * dfy); segments[9] = curveLength; segment = 0; } // Weight by segment length. p *= curveLength; for (;; segment++) { float length = segments[segment]; if (p > length) continue; if (segment == 0) p /= length; else { float prev = segments[segment - 1]; p = segment + (p - prev) / (length - prev); } break; } AddCurvePosition(p * 0.1f, x1, y1, cx1, cy1, cx2, cy2, x2, y2, output, o, tangents || (i > 0 && space < PathConstraint.Epsilon)); } return output; } static void AddBeforePosition (float p, float[] temp, int i, float[] output, int o) { float x1 = temp[i], y1 = temp[i + 1], dx = temp[i + 2] - x1, dy = temp[i + 3] - y1, r = MathUtils.Atan2(dy, dx); output[o] = x1 + p * MathUtils.Cos(r); output[o + 1] = y1 + p * MathUtils.Sin(r); output[o + 2] = r; } static void AddAfterPosition (float p, float[] temp, int i, float[] output, int o) { float x1 = temp[i + 2], y1 = temp[i + 3], dx = x1 - temp[i], dy = y1 - temp[i + 1], r = MathUtils.Atan2(dy, dx); output[o] = x1 + p * MathUtils.Cos(r); output[o + 1] = y1 + p * MathUtils.Sin(r); output[o + 2] = r; } static void AddCurvePosition (float p, float x1, float y1, float cx1, float cy1, float cx2, float cy2, float x2, float y2, float[] output, int o, bool tangents) { if (p < PathConstraint.Epsilon || float.IsNaN(p)) { output[o] = x1; output[o + 1] = y1; output[o + 2] = (float)Math.Atan2(cy1 - y1, cx1 - x1); return; } float tt = p * p, ttt = tt * p, u = 1 - p, uu = u * u, uuu = uu * u; float ut = u * p, ut3 = ut * 3, uut3 = u * ut3, utt3 = ut3 * p; float x = x1 * uuu + cx1 * uut3 + cx2 * utt3 + x2 * ttt, y = y1 * uuu + cy1 * uut3 + cy2 * utt3 + y2 * ttt; output[o] = x; output[o + 1] = y; if (tangents) { if (p < 0.001f) output[o + 2] = (float)Math.Atan2(cy1 - y1, cx1 - x1); else output[o + 2] = (float)Math.Atan2(y - (y1 * uu + cy1 * ut * 2 + cy2 * tt), x - (x1 * uu + cx1 * ut * 2 + cx2 * tt)); } } /// The position along the path. public float Position { get { return position; } set { position = value; } } /// The spacing between bones. public float Spacing { get { return spacing; } set { spacing = value; } } /// A percentage (0-1) that controls the mix between the constrained and unconstrained rotations. public float RotateMix { get { return rotateMix; } set { rotateMix = value; } } /// A percentage (0-1) that controls the mix between the constrained and unconstrained translations. public float TranslateMix { get { return translateMix; } set { translateMix = value; } } /// The bones that will be modified by this path constraint. public ExposedList Bones { get { return bones; } } /// The slot whose path attachment will be used to constrained the bones. public Slot Target { get { return target; } set { target = value; } } public bool Active { get { return active; } } /// The path constraint's setup pose data. public PathConstraintData Data { get { return data; } } } }